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With relevance to the study of external cooling of the working blades
of gas turbines by air-liquid mixtures, a solution has been obtained
for the problem of heat conduction of an infinite plate with periodic
variations of the heat transfer coefficient and of the temperature of
the surrounding medium.

Analysis of the causes which hinder the widespread
use of well-known methods of internal cooling applied
to the rotor blades of gas turbines leads one to con-
sider how to achieve external cooling without inter-
fering with rotor design.
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Fig. 1. The heat-transfer coef-

ficient and the temperature of

the surrounding medium as a
function of time.

Reference [1] has suggested cooling of the blades
of a turbine rotor by an air-liquid mixture dis-
charged from a certain number of hollow stator
blades. In this system drops of liquid falling onto the
surface of the nozzle blades are heated and vaporized.
If the temperature of the cocled blades is compar-
atively high (greater than 600° C) then, for a small
number of cooling elements, the drops will be evap-
orated from the surface of the blades and the heat-
transfer process between the medium and the blades
will have a pronounced periodic character, due fo the
difference in the heat-transfer coefficients, and in the
temperatures of the gas and the cooling agent.

If the variations of the heat-transfer coefficient and
of the temperature of the medium are as shown inFig. 1,
then solution of the heat-conduction problem for an in-
finite plate would allow us to estimate the possibility
of, and the special features of, external cooling of
turbine blades.

Prikhod'ko [6], under the direction of the present
author, has determined the temperature field of a
plate for an arbitrary variation with time of the heat-
transfer coefficient and the temperature of the sur-
rounding medium. This was achieved by reducing the
problem to a Sturm-Liouville system, equivalent to
a Fredholm integral equation of the second kind, and
by applying a special bilinear series to expand the
kernel of the integral equation.

However, it is difficult to use this solution for the
periodic laws of variation of medium temperature and
heat-transfer coefficient that interest us, since ty, and
ay cannot be expressed in terms of analytical func-
tions. Representation of these by the appropriate
Fourier series leads to extreme mathematical diffi-
culties in attempting to proceed from the above solu-
tion.

The most important aspects of our problem are the
questions of what is the mean-integral plate tempera-
ture in a quasi-steady state, i.e., by how much can
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Fig. 2. Heat flux at the
plate surface as a func-
tion of time.

the temperature of a hot plate, located in a medium
with periodic variation of t, and ap,, be reduced, and
what will then be the range of temperature oscillations
at its surface.

To answer the first question, we start from the the-
sis that for a quasi-steady state (r — =) the mean-
integral temperature of all points of the body does not
depend on its dimensions when the action of the me-
dium on the body is periodic. On this basis we solve
the problem of determining (=) for a body that is thin
in the thermal sense. The solution for arbitrary pe-
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riodic laws of variation of ty; and oy, has been given
in [2]. I we use this solution, then, for the laws of
variation of t;, and «y, considered, we obtain an ex-
pression for the body temperature at the end of the
m-~th period:

HT ) = iy +exp{ —mk ot + ag(T) — Wi} +

+( tall —exp (—ka,t)] exp [—kog (T — 1)l +

+texpl—k oy (Ti—1)l ) (1 — exp { —k{a,t, +
+a (T, — 1)) })" x
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Hence, for sufficiently large m, i.e., for a quasi-
steady state,

HT ) = (o0) = ( £y [1— exp (—k agry)] exp | —k agx
X (Ty — )l + 1ty expl—kay (T, — 1)) x
x (1—exp {— k2t + ay (T, — 1)1 ). (2)

The temperature 74 of a thin body within the first
section, and in the second section Ty — 74, of the
{m + 1)-th period (for sufficiently large m) are calcu-
lated to be

t(Tl)m“}'l,Tx: t ( OO)T- = ta - [ta—‘t (Tl)m] €xp (—k aaT)1 (3)
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If we substitute the value of t(T)y from (2) into (3)
and (4), and determine the mean-integral temperature
of the thin body in the quasi-steady state over the pe-
riod Ty, the final expression is obtained in the form
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The last term of (5) expresses the influence of the
periodic law of variation of @y, on the mean-integral
body temperature. For a high oscillation frequency of
oy, and ty,, expression (5) takes the simpler form

f_( oo) - ta QyTy + tg Oy (TI - Tl)
QT + o T,—m)

(6)

since for x < 0. 01, to a sufficient degree of accuracy,

exp (—x)= —l—— .

1+x

By introducing the equivalent heat-transfer coeffi-
cient
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we can represent the solution of (1) in the form
HTm=1(Tym) =t (1) =
[k
= AeXp {\—7{ CteqTJ, (8)

where A =f(t;, ty, tg, ag, ag, k, Ty, 74), and does not
depend on 7. Therefore the temperature of a thin body
for periodic variation of oy, and ty proves to be an
exponential function of time, as measured by the in-
tegers T,. This fact allows us to determine experi-
mentally the equivalent heat transfer coefficient by the
methods of regular regime theory, and not only for
thin bodies. In the case considered, for high oscillation
tion frequencies of ay, and ty,, the temperature os-
cillations at all points of the body, as was shown above,
are small in comparison with the range of oscillations
of ty,, and so, by neglecting these oscillations, we
can assume that the temperature field of the body
will vary as it would if the body were acted on by a
medium with constant temperature t,, = t() at a con-
stant heat transfer coefficient o = agq.

Thus, if ag, aeq, Ty, and 74 are known, we can
calculate the mean temperature t(«) of the plate, and
estimate, in first approximation, the effectiveness
of external cooling of the rotor blades in gas tur-
bines.

Having determined the mean-integral temperature
for a quasi-steady state, we can explain how the plate
temperature oscillates relative to its mean value [5].
To do this we solve the following problem.

We are given an infinite plate of thickness 2R at a
temperature of t(x, 0) = t(w). Both surfaces of the
plate are exposed to a periodically varying heat flux
dm = am[fle) = tm] (Fig. 2). We have to find the
temperature distribution through the plate some in-
stant of time.

We have
2
Gt(x, ’L') - aa t (x, T)1 (9)
dr Ox?
1(x,0) =7() =1, (10)
R 4= 0, (11)
ox
where

o g, for 0 <t < 14, (12)

g, for &y <1< Ty;
AU (13)

ox

We solve the problem by an operational method.

As is known [3], the solution of the heat-conduction
equation for the transform of a function, taking into
account (13), has the form

@ (x, s) —% =¢ch ’V/%— X. (14)
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The transform of the heat flux is

9a

Q) = L{gnl = ——"—
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Ag=q,—q, and ¢,7 =G {T;—1).

If we substitute (15) into the boundary condition (11)
written for the transform of the function, and taking
into account (14), we find the solution for the trans-
form

1—exp(—1, §)— —2- [1—exp(—T s)}
T,

l—exp(—T.s)

ch‘/‘ix
X a . (16)
l/js—sh |/ SR
a a

In order to go back to the original function we must
apply the inverse Laplace transform and the Cauchy
residue theorem. Here we can restrict the deter-
mination of residues to the poles located along the
imaginary axis, i.e., in the roots of the equation
1 — exp(~sT,) = 0 (whence s = +2ksi/ T, where k=1
2, 3, ...), since the periodic part of the solution is
determined only by

k=w
Yres— X | ewirg
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where

A=chpcospshrcosr+4shpsinpchrsinr;
B=chpcospchrsinr-shpsinpshrecosrs;

®=sinbv—sinb(t—r)

¢ =cosbrt—cosb(r— 1)
l /k:rc_ km 2knt
p=7 aTl’ =R aT1 b= T, (18)

Thus, the periodic component of the plate tempera-
ture is

tx, 1) —1t, = X
Tt
2n ar, A
N Al —9)—Bo 4 9) (19)

(sh®r cos?r -+ ch?r sin? ) B**
k=1

Since the remaining poles of function (16) lie at
zero and on the left side of the real axis, the residues
corresponding to these allow us to obtain the constant
and aperiodic parts of the solution. However, there
is no need to determine these, since the constant part
of the solution, representing the mean deviation of
plate temperature from the mean-integral value for a
quasi-steady state, is negligibly small. The sign of
this quantity depends on the sign of qy, at time zero.
The sum of the series of exponentials, determining
the aperiodic part of the solution, is important only
for small 7, as reckoned from the start of examination
of the process, and for T — « this sum tends to zero,

The largest temperature oscillations, of course,
will occur at the plate surface.

For,

B= % sin 2r (ch® r —sh? r)

and

HR, ) —t,=
It
2n a—T—l—}\,

iSh 2 (0 —g) —sin2r(ch?r —sh®r) (@+1 (50

= 2 (sh?r cos?r -+ ch? rsin®r) £¥*
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If we assume that for gas turbines with n = 50 rps,
and with cooling agents supplied only from two blades
of the nozzle diaphragm r > 5(k)!/?, with shr = chr in
practice, we obtain

QSiH% Ag
HR, ) —t,= — X
It
I E}»
©_sin k;r, cos,:-:—— 2;“ <r——;—‘~ﬂ
X ! P L -2y

k=1

The range of temperature oscillations of the plate
surface is

Ag

At(R) =t(R, v) —1 (R, 0) = X
T
n [le
= sinfkm i « 3
T, Ag -3
D 2
k=1 " al, =1
V aT
=AgoL (22)
2.1334

3

since the sum 2 BT = 2.612[7].

k=]
Putting @ = 6+ 10" m?% sec, A = 20 W/m.deg and
Ty =2-107* sec, we obtain

At(R) < 0.8-10~°Aq.

Cases are possible in which T, will have an appre-
ciable value. Thus, for n = 50 rps, and with two spray
nozzles, Ty = 0.01 sec. In this case

A#(R) < 5.6-10-%A g,

and if Aq = 10° W/m?, then At(R) < 5. 6°, while if Aq =
= 10"W/m?, we have At(R) < 56° C.

The results of experiments have shown in [1,4],
that for values of the parameters that are typical of
contemporary gas turbines, the value of Aq with ex-
ternal air-water cooling is the order of 10° W/m?.
Then At(R) < 5.6°. Subsequently, if it turns out in that
Aq = 10" W/n?, then even with unfavorable conditions
(low cycle frequency) the range of oscillations of the
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blade surface temperatures At(R) will be less than
56°C. On this evidence it can be asserted that possible
oscillations of surface temperature of the rotor blades
of a gas turbine with air-liquid cooling cannot be an
obstacle to the practical application of this method of
cooling.

NOTATION

Here ty isthetemperature of the medium; ayy, is the
heat transfer coefficient; T, is the period of oscillation
of tyy, ¥m; Ty is the time of action of the cooling agent
on the body; tg and t, are the temperatures of the gas
and of the cooling agent; ¢, is the coefficient of heat
transfer between the cooling agent and the body; ¢ is
the coefficient of the heat transfer between the gas and
the body; k = 3 F/eyV; ¢ is the coefficient character-
izing the nonuniformity of temperature distribution in
the body; F and V are the surface area and volume of
the body; v and ¢ are the density and specific heat of
the body; a is the thermal diffusivity; qn, is the heat
flux through the body surface; R is the half-thickness
of the plate; A is the thermal conductivity.

REFERENCES

1. Ya. A. Levin, Teploenergetika, no. 12, 1959.

2. Ya. A. Levin and I. M. Prikhod'ko, IFZh [Jour-
nal of Engineering Physics], vol. 10, no. 2, 1966.

3. A. V. Luikov, Heat-Conduction Theory [in Rus-
sian], 1949.

4, Ya. A. Levin and L. P. Pavolotskii, "Air-
water cooling of the rotor blades of gas turbines,"
Energomashinostroenie, no. 10, 1965.

5. A. M. Shklover, Heat Transmission with Pe-
riodic Thermal Effects {in Russian], Gosenergoizdat,
1961.

6. I. M. Prikhod'ko, Izv. Vuz. Aviatsionnaya
tekhnika, no. 3, 1963.

7. E. Jahnke, F. Emde, and F. Lesch, Special
Functions [Russian translation], Izd. Nauka, 1964.

22 August 1966 Higher College of Command Engi-

neers, Khar'kov



